Journal Logo
JOURNAL OF PHARMACOLOGY AND BIOMEDICINE
ISSN.2456-8244
Editor-in-Chief
Dr.Richa Mishra Online ISSN
2456-8244 Publisher
RB-Science Abbreviation
J. Pharmacol. Biomed
ABSTRACT

Recently, triazatruxene-based molecules have shown excel- lent efficiency for thermally activated delayed fluorescence (TADF) organic light emitting diodes (OLEDs) and hole transporting mate- rials (HTMs) for perovskite solar cells. We have synthesized the donor moiety triazatruxene (TAT) and its three derivatives TAT-Alk, TAT-Alk-Br and TAT-Alk-3Br by alkylation and bromination of TAT. Photophysical and electrochemical studies were carried out to explore its optoelectronic applications.

Articles Details

NAMES:

ONLINE ISSN:2456-8244

Keywords: Triazatruxene Photophysical Electrochemical Theramally activated Fluorescence

DOI:

REFERENCES

1. Vogel, I. (1974). Practical organic chemistry.

2. Li, X. C., Wang, C. Y., Lai, W. Y., & Huang, W. (2016). Triazatruxene-based materials for organic electronics and optoelectronics. Journal of Materials Chemistry C, 4(45), 10574-10587.

3. Goubard, F., & Dumur, F. (2015). Truxene: a promising scaffold for future materials. RSC advances, 5(5), 3521-3551.

4.Tao, L., Xie, Y., Zhao, K. X., Hu, P., Wang, B. Q., Zhao, K., & Bai, X. Y. (2024). Triphenylene Trimeric Discotic Liquid Crystals: Synthesis, Columnar Mesophase and Photophysical Properties. New Journal of Chemistry.

5. Bisoyi, H. K., & Li, Q. (2014). Directing self-organized columnar nanostructures of discotic liquid crystals for device applications. In Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (pp. 209-256). Cham: Springer International Publishing.

6. Pal, K., Raza, M. K., Legac, J., Rahman, M. A., Manzoor, S., Rosenthal, P. J., & Hoda, N. (2021). Design, synthesis, crystal structure and anti-plasmodial evaluation of tetrahydrobenzo [4, 5] thieno [2, 3-d] pyrimidine derivatives. RSC Medicinal Chemistry, 12(6), 970-981.

7. L. dos Santos, P., de Sa Pereira, D., Eng, J., Ward, J. S., Bryce, M. R., Penfold, T. J., & Monkman, A. P. (2023). Fine‐Tuning the Photophysics of Donor‐Acceptor (D‐A3) Thermally Activated Delayed Fluorescence Emitters Using Isomerisation. ChemPhotoChem, 7(2), e202200248.

8. Wu, T., Zhang, D., Ou, Y., Ma, H., Sun, A., Zhao, R., ... & Hua, Y. (2021). Efficient perovskite solar cells enabled by large dimensional structured hole transporting materials. Journal of Materials Chemistry A, 9(3), 1663-1668.

9. Ginnari-Satriani, L., Casagrande, V., Bianco, A., Ortaggi, G., & Franceschin, M. (2009). A hydrophilic three side-chained triazatruxene as a new strong and selective G-quadruplex ligand. Organic & Biomolecular Chemistry, 7(12), 2513-2516.

10. Pathak, S. K., Liu, H., Zhou, C., Xie, G., & Yang, C. (2021). Triazatruxene based star-shaped thermally activated delayed fluorescence emitters: modulating the performance of solution-processed non-doped OLEDs via side-group engineering. Journal of Materials Chemistry C, 9(23), 7363-7373.

11. Aslan, M., Taskesenligil, Y., Pıravadılı, S., & Saracoglu, N. (2021). Functionalization at nonperipheral positions of triazatruxene: modular construction of 1, 6, 11-triarylated-triazatruxenes for potentially organic electronics and optoelectronics. The Journal of Organic Chemistry, 87(8), 5037-5050.

12. Liu, Y., Wu, Y., Wang, T., Wang, Q., Han, X., Wu, X., & Wang, L. (2023). Bridged triazatruxene-based host materials for solution-processed thermally activated delayed fluorescence organic light emitting diodes with high power efficiency. Organic Electronics, 113, 106720.

13. Ahn, D. H., Kim, S. W., Lee, H., Ko, I. J., Karthik, D., Lee, J. Y., & Kwon, J. H. (2019). Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nature Photonics, 13(8), 540-546.

14. Peng, X., Qiu, W., Li, W., Li, M., Xie, W., Li, W., & Su, S. J. (2022). Synergetic Horizontal Dipole Orientation Induction for Highly Efficient and Spectral Stable Thermally Activated Delayed Fluorescence White Organic Light‐Emitting Diodes. Advanced Functional Materials, 32(28), 2203022.